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Abstract 
The 371 four-dimensional superspace symmetry 
groups for the mono-incommensurate modulated 
structures have been classified with different but 
equivalent notations by de Wolff, Janner & Janssen 
(WJJ) and Weigel, Phan & Veysseyre (WPV). The 
exact correspondence between the two types of sym- 
bols and examples of physical modulated structures 
are given in this paper. 

Introduction 
In the last decade, there have been many structural 
investigations of incommensurate modulated struc- 
tures; as far as three-dimensional (3D) methods are 
concerned, a group-theoretical analysis which takes 
time reversal into account correctly describes the dis- 
placements in two examples: T - N a 2 C O  3 and K2SeO4 
(Bertaut, 1984, 1985). A new formalism has been 
developed in (3 + n)-dimensional space, to take into 
account simultaneously the symmetry of the modula- 
tion wave and the basic symmetry of the average 
structure (de Wolff, Janssen & Janner, 1981; Janner, 
Janssen & de Wolff, 1983; Yamamoto, Janssen, 
Janner & de Wolff, 1985; Janssen & Janner, 1987). 
An important part of these new structures is mono- 
incommensurate (MI), i.e. it has only one direction 
of incommensurability, and their description leads 
to the construction of all four-dimensional (4D) 
superspace symmetry groups, appropriate for MI 
structures. 

In this first analysis, the 4D-mono-incommensurate 
superspace groups have been derived from the con- 
sideration of their 3 D average structure, characterized 
by its own 3D space symmetry group. A more mathe- 
matical analysis (Brown, Billow, Neubilser, Wondrat- 
schek & Zassenhaus, 1978) allowed us to derive all 
the 4D point symmetry groups (4D PSGs) and all the 
4D space symmetry groups (4D SSGs), but in such a 
way that it becomes very difficult to handle and to 
visualize these groups for a crystallographer. Lately, 
a more geometrical description has been proposed 
(Weigel, Phan & Veysseyre, 1987; Phan, Veysseyre, 
Weigel & Grebille, 1989), in order to generalize the 
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principles of the notations of the 3D SSGs as they 
are now normalized in International Tables for Crys- 
tallography (1983), and to take into account the pre- 
vious mathematical analysis. 

These three independent 4D descriptions and nota- 
tions can be used to classify the mono-incom- 
mensurate structures and we shall first illustrate them 
by a simple physical example, the modulated struc- 
ture of y-Na2CO3. 

This modulated structure has already been ana- 
lysed in the 4D description (van Aalst, den Hollander, 
Peterse & de Wolff, 1976; Veysseyre & Weigel, 1989) 
and the symmetry operators have been derived and 
listed from the observation of the diffraction pattern. 
The average structure belongs to the monoclinic sys- 
tem (space group C2/m, unique axis b) and the 
modulation wavevector is q = ~ a * + y c *  (a =0.182 
and y=0.318 at room temperature). The new 
reciprocal basis vectors are a*, b*, c* and q + d*, where 
d* is a unit vector orthogonal to the reciprocal 3D 
space, and in the direct space, the new basis vectors 
are a - a d ,  b, c - y d ,  d, where d is a unit vector 
orthogonal to the physical 3D space (a,b,c).  The 
orthogonality and modulus relations lead either to 
the triclinic system (Brown et al., 1978), to the system 
right hyperprism based on parallelepiped (Weigel et al., 
1987) or to the system planar monoclinic (de Wolff et 
al., 1981). The analysis of the extinction conditions 
of the diffraction pattern and of the basic symmetry 
leads to the following symmetry operations (in the 
notations of the Wyckoff positions of the International 
Tables for Crystallography). 

In a 3D symmetry where u(~'), v(~') and w(~-) are 
the atomic displacement functions from the average 
atomic positions x, y and z and ~" is a phase variable: 

SI x+u(~') y+v(r) z+w(~') 
S2 - x - u ( - r )  - y -  v ( - r )  - z -  w(-z) 
$3 x+u(r+l/2)  - y - v ( r + l / 2 )  z+w(r+l/2) 
$4 - x - u ( - r + l / 2 )  y + v ( - r + l / 2 )  - z - w ( - r + l / 2 ) ;  

in a 4D symmetry, where t is the fourth coordinate: 

S1 x y z t 
$2 - x  - y  - z  - t  
$3 x - y  z t + 1/2 
$4 - x  y - z  - t + l / 2 .  

© 1990 International Union of Crystallography 
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One can recognize the following: 
(a) S1 is the identity ha [173 or  [E 4. 
(b) $2 is the inversion in E 3 and the 'homothetie 

minus 1' (which is the double rotation 14) in E 4. 
(c) $3 is a mirror through a plane orthogonal to 

b in IF 3 and a glide reflection through a hyperplane 
orthogonal to b combined with a translation d/2 along 
the t axis in IF 4. 

(d) S4 is a twofold rotation about the b axis in E 3 
and an inversion T through an axis parallel to b in ~4 
(Veysseyre, Phan & Weigel, 1985). 

Moreover, we have to take into account a centring 
condition, so the corresponding notations of the SSG 
are respectively II-02/03/02/002, S(X ,  Y)  i ± m d  and 
pC2_/m~ s in BBNWZ (Brown et al., 1978), WPV (Phan 
et al., 1989) and WJJ (de Wolff et al., 1981) notations. 

In the present paper, our purpose is to specify the 
general equivalence between these different descrip- 
tions and notations, more particularly for WJJ and 
WPV notations, since the last ones are derived from 
those of BBNWZ in a simpler presentation; we shall 
propose a simple way to derive a symbol of a 4D SSG 
from either description. 

General correspondence between WJJ 
and WPV symbols 

A complete list of the (3 + 1)-dimensional superspace 
groups has already been established in order to 
describe the crystal symmetry of the mono-incom- 
mensurate modulated structures (de Wolff et al., 
1981). A two-line symbol has been proposed, which 
clearly refers to the diffraction symmetry and to the 
distinction between main and satellite reflections or 
between the three physical dimensions of the basic 
structure and the internal dimension. These symbols 
can be written under the generic form 

Y 
X 

Z 

where X is related to the rational components qr of 
the wavevector q, Y is the Hermann-Mauguin  symbol 
of the group of the basic structure in the physical 
space and Z describes the symmetry operations gi in 
the fourth dimension associated with each generator 
gE of the basic space group Y. 775 WJJ symbols are 
used to describe the 371 mono-incommensurate crys- 
tallographic space groups of [~4 (Phan et al., 1989; de 
Wolff et al., 1981; Yamamoto et al., 1985). 

It is clear that the 371 WPV and the 775 WJJ sym- 
bols deal with the same mathematical objects and our 
purpose in this section is to establish a correspon- 
dence between these notations. As explained earlier, 
WJJ notations are directly related to the three- 
dimensional physical symmetry of the average struc- 
ture, which is most of the time the real symmetry of 
a high-temperature basic structure. Consequently, the 

WJJ symbols introduce a dichotomy between the 
external space (the physical space) and the internal 
space (the modulation space), and so each symmetry 
operation g is the product of two symmetry operations 
{gE,g~}; gE is present in the Y symbol while the 
corresponding operator g~ is present in the Z line. In 
the same way, a centring condition is present partly 
in the Y line, as far as it concerns the basic structure, 
and partly in the X letter, because a rational com- 
ponent of the modulation vector is equivalent to a 
centring condition in the fourth dimension. With 
WPV notations, the four-dimensional space group is 
treated as a whole, and, consequently, the symbols 
are more general and not uniquely related to the 
structural description of mono-incommensurate 
modulated phases; the symmetry operations and the 
centring conditions are  then defined in the four 
dimensions of IF 4. 

(a) Notations o f  the point symmetry operations 
( PSOs ) o f  ~_4 

As we are only concerned with mono-incom- 
mensurate space groups in our analysis, we must deal 
with the PSOs occurring in the corresponding crystal 
families, i.e. the families I, II, III, IV, VI and VII 
(Phan et al., 1989). These PSOs are listed in Table 1. 
For each of them, we must consider the restriction 
of the operator to the external and internal spaces to 
derive the corresponding WJJ symbols. Most of the 
time, there is no ambiguity because the symmetry 
conditions for incommensurate structures imply the 
form of the matrix associated with the symmetry 
operation: (Q0) 

0 ' 
0 0 e 

where Q is a 2 × 2 matrix and e = +1 (de Wolff, 1974). 
This form imposes a choice concerning the fourth 
dimension. Nevertheless, the rotation 2 is either in a 
plane containing the fourth dimension or not, and 
this leads either to a mirror plane m or to a 2-axis in 
the physical space. To remove the ambiguity, we 
characterize the (MI)-  symmetry operations which 
invert the internal dimension, i.e. which transform q 
to -q ,  by the extra symbol v. The WPV-WJJ corre- 
spondences are listed in Table 1. 

( b) Notations o f  the point symmetry groups ( PSGs) 
of  E 4 

The correspondences between WPV and WJJ 
notations are listed in Table 2 for the 31 mono- 
incommensurate WJJ PSGs, which correspond to 30 
crystallographic PSGs among the 227 ones in n :4 
(Weigel et aL, 1987); indeed, one of them, 2, splits 
into two, 2 and 2 v, when we distinguish between the 
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Table 1. WPV and WJJ symbols for the elementary 
PSOs associated with the mono-incommensurate space 

groups 

Elementary PSO 
full symbol WPV symbol WJJ symbol 

1 1 ( : )  

3xv 3 

4xv 4 

± 1  6Xy 6 

2z-r4x~- (24) v (~'1) 

2z-r6xv (26) v 

2z-r3~ (23)" (61) 

external and the internal dimensions. Their WJJ sym- 
bols are usually directly deduced from the WPV ones 
by the previous correspondence of their generating 
PSOs, provided one outlines some supplementary 
remarks: 

(i) the symbol '_L' in WPV notations replaces the 
symbol ' / '  in WJJ notations; 

(ii) for convenience, the respective arrangement of 
the PSOs is not always respected (VI-03, VI-04, VI-07, 
VII-09-03, VII-09-07); 

(iii) the symbol of the PSG 2/m has been com- 
pleted to 2 /m yv, because the inversion axis T v can 
be a 81ide axis in the space group, and so justifies a 
notation for itself; 

(iv) the notations of some PSOs are omitted in 
WJJ s~mbols when they are not necessary: 2 in IV-04 
and 1" in VII-08-05. 

Here we can outline an important remark; when 
the WJJ symbol of a PSG has in its Z line only 1 
values, and no T value, the fourth direction is invariant 
by all its PSOs and the corresponding PSG is a polar 
PSG of H :4. Its WPV notation is then the same as the 
classical Hermann-Mauguin  3D notation of the basic 
structure (Veysseyre & Weigel, 1989). 

( c ) Notations of  the centring and of  the Bravais classes 

From a crystallographic point of view, a centring 
derives from supplementary elementary translations 
with non-integer components introduced in the cell 
of the direct space or from systematic extinction con- 
ditions observed in the reciprocal space. 

Now if we consider the different Bravais classes as 
they have been classified in de Wolff's approach, we 
can notice the very peculiar r61es of the 3D basic 
lattice on one hand and the internal direction on the 
other. Here a Bravais class is not defined as a rigorous 
Bravais type in H :4, but (i) by the 3D Bravais type of 
its basic lattice, (ii) by the orientation of the modula- 
tion vector in this basic lattice (this distinction leads 
to the two monoclinic systems, either planar or axial) 
and (iii) by the rational components of the modula- 
tion wavevector. With all these considerations, a list 
of 24 Bravais classes has been established (de Wolff 
et al., 1981). 

On the other hand, the Bravais types of the 4D 
space have been listed and there are 16 for the 7 
mono-incommensurate systems (Phan et al., 1989). It 
becomes clear that some Bravais classes of the first 
classification are equivalent in the framework of the 
second one, since the internal fourth direction is not 
specified in the latter. 

Let us take two examples and consider the WJJ 
Bravais classes 11 and 17 (first column of Table 3). 
The first one, W P'~ ~ ~' is characterized by a primitive 
orthorhombic basic lattice (a, b, c) and rational com- 
ponents (1/2, 1/2, 0) of the modulation wavevector. 
The new lattice in direct 4D space is ( a - 1 / 2 d ,  
b -  1/2d, c -  7d, d). Now if we take A = 2a, B = 2b, 
C = c - 7 d ,  D = d as new basic vectors, we note that 
the translations (A+B) /2 ,  ( A + D ) / 2  and ( B + D ) / 2  
belong to the 4D lattice, and the new cell appears to 
be face centred I F ( l ,  2, 4) in BBNWZ or F(X,  Y, T) 
in WPV notations]. 

The second one, p F , ~ ,  is characterized by a 
face-centred basic lattice (a ,b ,c)  with additional 
translations ( a + b ) / 2 ,  ( b + c ) / 2  and ( a + c ) / 2 ,  and a 
purely irrational modulation wavevector (0, 0, 7). The 
new cell in the direct 4D space is (a, b, c -  yd, d). We 
know that, for a modulated structure, a 3D translation 
operation of vector v is equivalent to a translation 
(v, ( - q . v ) d )  in the 4D space. The extra centring 
translations become ( a + b ) / 2 ,  ( a + c - y d ) / 2  and 
( b + e - 7 d ) / 2  and correspond to face-centring trans- 
lations [F(1,  2, 3) in BBNWZ or F(X, Y, Z)  in WPV 
notations] in relation to the 4D cell. 

These two classes correspond to the same 4D 
Bravais type F in crystal family IV, regardless of the 
choice of the axes. If we generalize the reflection 
conditions of such a Bravais type from the equivalent 
ones in 3D space, we obtain the conditions (h + m = 
2n, k + m = 2n') for F( X, Y, T) and ( h + k = 2n, k+ 
l = 2n') for F(X, Y, Z)  (we recall that m is the Miller 
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Table 2. WPV and WJJ symbols for the mono-incom- 
mensurate PSGs of ~_4 

Family class WPV symbol WJJ symbol 

I. Hexaclinic 

01-01 1 

01-02 i~ 

II. Right hyperprismbased on parallelepiped 

02-01 m 

02-02 i v 

02-03 lV±m 

III. Di-orthogonal parallelograms 

03-01 2v 

03-02 2i2 v 

IV. Orthogonal parallelogram rectangle 

7 1 /  

(:/ 

l 7 /  

04-01 m, m, 2 1 

04-02 2 V / m , i  v T l 

04-03 2,1",1" (21 2 27) 

04-04 2v±2, m, m 1 

VI. Orthogonal parallelogram square 

07-01 (24) v 

07-02 4 

07-03 2v±4 

07-04 (24) v, m, T v 

07-05 4, ~v, iv 

07-06 4, m, m 

07-07 2v_1_4, m, m 

(:) 
4, 
l i /  

(::r) 
(4,o°:)  

1 [  1 

index corresponding to the satellites in the diffraction 
pattern). These conditions correspond to the respec- 
tive reflection conditions listed for the Bravais classes 
11 and 17. 

Some Bravais classes are a little more complicated 
since they simultaneously induce a non-primitive 
basic lattice and rational components of the modula- 

Table 2 (cont.) 

Family class WPV symbol 

VII. Orthogonal parallelogram hexagon 

WJJ symbol 

080, 3 (3) 

09-03 2v_1.6 \ 1 i /  

o9.04 6, ,o ( 6 m l /  

09-07 2v_1_6, m, m \ 1 [ 1 

tion wavevector, for example, in the orthorhombic 
system, the Bravais class 14, L c 7' 7' f'. 

The basic 3D lattice has a, b and c as basic cell 
vectors and (a + b)/2 as an additional translation. The 
modulation wavevector is (1, 0, y). As a consequence, 
the 4D lattice has basis vectors ( a - d ,  b, c - y d ,  d). 
The vector a is still a lattice vector and if we keep it 
as first basis vector, we must introduce the new addi- 
tional translation (a + b -  d)/2, associated with the 3D 
translation ( a + b ) / 2 ;  it is characteristic of a body- 
centred lattice I(X, Y, T). Moreover, we can outline 
that the reflection condition (h + k +  m = 2n) listed 
for this Bravais class corresponds to a typical body- 
centred-lattice reflection condition. 

For most of the WJJ Bravais classes, it is no par- 
ticular problem to derive the equivalent WPV Bravais 
type. The correspondence is listed in Table 3, with 
respect to the different settings including the fourth 
direction. 

There are only two classes which cannot be directly 
deduced, the Bravais classes 18, LF'~7~, and 20, 
W~4/~'f'f. For the first one, if we apply the same 
process as previously, we simultaneously obtain two 
body centrings I ( X, Y, T) and I ( X, Z, T) and a face 
centring S( Y, Z) ,  which are coherent with the corre- 
sponding reflection conditions (h + k +  m = 2n, k +  
l - -2n ' ) .  But this Bravais type is not valid as a 4D 
Bravais type in the system orthogonal parallelogram 
rectangle; and in fact, the body centring I(X, Z, T) 
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Table 3. Correspondence between WJJ, BBNWZ and WPV symbols of the Bravais lattices of E4; equivalent 
WJJ Bravais classes are bracketed together 

WJJ symbol* B B N WZ symbo l t  WPV symbol~ 

Triclinic Hexaclinic 
01-P P 1-01-02-01 P 

Planar monoclinic Right hyperprism 
based on parallelepiped(X, Y, T) 

02-P P 11-02-03-01 P 
03-C P 11-02-03-02 IS(Z, T) 
04-P B IS( X, Z)  

Axial monoclinic Di-orthogonal parallelograms(XY)(ZT) 
05-P P III-03-02-01 P 
06-A P 1II-03-02-02 {S(X, T) 
07-P t~ S( X, Z)  
08-B s III-03-02-03 D( X, Z)( Y, T) 

Orthorhombic Orthogonal parallelogram(ZT) rectangle(XY) 
09-P P I V-04-04-01 P 
13-P c IV-04-04-02 S(X, Y) 
10-B P IV-04-04-03 ~S( Y, T) 
15-P a IS( Y, Z)  
12-P'  IV-04-04-04 ~ I ( X, Y, Z) 
14-L c [I(X, Y, T) 
16-A a IV-04-04-05 [D( X, r)( Y, Z) 
18-L F [D( Y, Z) (X,  Z +  T) 
11- W P IV-04-04-06 ~'F(X, Y, T) 
17-P F (F(X, Y, Z) 

Tetragonal Orthogonal paral le logram(ZT) square(XY) 
19-P e VI-07-07-01 P 
20-W e VI-07-07-02 [I(X + Y, X -  Y, T) 
21 -pj /I(X, Y, Z) 

Trigonal hexagonal Orthogonal parallelogram(ZT) hexagon(XY) 
f22-e  R VII-08-05-01 JR(X, Y, Z) 
~23-R p tR(X, Y, T) 
24-P P VI 1-09-07-02 P 

* One recalls that the symbols P, B, C, L, W and R correspond respectively to rational components of  the modulation vector of (0, 0, 0), (0, 1/2, 0), 
(0, 0, 1/2), (1, 0, 0), (1/2, 1/2, 0) and (1/3, 1/3, 0). The number which precedes the WJJ symbol corresponds to the WJJ classification of the Bravais classes. 

5" The BBNWZ symbol refers to the holohedry of  the considered Bravais type of E 4. 
1:The setting of the axes has been defined again to be consistent with the WJJ setting, Le. T is the internal direction. One recalls that the centring 

D(X, Z)( Y, T) corresponds to the three simultaneous centrings S(X, Z), S( Y, T) and Z(X, Y, Z, T). 

is not a valid one with the angular relations between 
the three basis vectors a, c - y d  and d (they form a 
monoclinic cell which cannot be body centred). Now 
if we consider that the fourth direction is not a specific 
one, we can replace d by d ' = c + d ,  the centring 
I(X, Z, T) becomes S(X, T'), I(X, Y, T) becomes 
Z(X, Y,Z,T')  and the Bra~cais type becomes 
D( Y, Z)(X, T'), with T' = Z + T. In this case, the new 
axis d' is a combination of an internal and an external 
direction, and such a choice is forbidden in WJJ 
notations. 

For the second one, W P, similar considerations 
would give a face-centred F(X, Y, T) cell (see, for 
example, the WJJ Bravais class 11). But in the 
tetragonal system we can choose a new set of axes 
( A ' = a + b , B ' = a - b )  and F(X,Y ,T)  becomes 
I(X', Y', T) which is compatible with the crystal 
system orthogonal parallelogram square (of course, 
a tetragonal cell cannot have all faces centred). 

(d) Notations of the space symmetry groups (SSGs) 
o f  E 4 

From the previous considerations, it is now easy 
to derive the general correspondence of the WJJ and 

WPV notations of the SSGs of [E 4. The notations of 
the translation parts of the symmetry operators are 
the following: 

(i) In WPV notations, a subscript indicates the 
orientation and the modulus of the translation vector, 
whatever its direction. (For simplification, the nota- 
tion ' /2 '  is omitted and is the standard value of the 
translation vector along the considered direction.) 

(ii) In WJJ notations, in the external space, the 
notations are the Hermann-Mauguin  notations of the 
3D SSGs, and in the internal direction, a notation of 
the r value of the phase shift is given by one of the 
letters s, t, q or h in the Z line of the symbol, according 
to the modulus of the translation vector. 

Since there is a clear distinction between internal 
and external spaces in WJJ notation, which is not 
explicit in WPV notation, it becomes obvious that 
some different WJJ SSGs will be equivalent to the 
same WPV SSG, but with a different setting of the 
axes. We can here outline three different types of 
equivalence, which appear when one of the external 
directions is equivalent to the internal one with 
respect to all the PSOs of the SSG. 

(i) Equivalence related to the translation vectors 
of the space symmetry operation; for example, the 
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WJJ SSG PP~ and pe~, will be written in WPV 
notation Ptm b and ,Prod; in the same way, pP2, and 
pP2 will be written P2~ and P2d. 

(ii) Equivalence related to the choice of the axes 
of a rotation plane in 11:4; for example, PP~' and pe2 
will be written P2 v and P2. 

(iii) Equivalence related to a centring; for 
example, P~ ~' and C P'~ refer to a face centring which 
will be written respectively S(X, Z )m and S(Z, T)m 
in WPV notations. 

Some physical examples of incommensurate structures 

Some incommensurate structures have already been 
determined and their symmetry has generally been 
described in the four-dimensional formalism with the 
WJJ notation, which is the most closely related to the 
corresponding average structure and to the distinction 
between internal and external spaces. It is now inter- 
esting to consider their real four-dimensional SSG 
with their general WPV notation and to compare these 
notations. 

In the introduction we have already detailed the 
example of y-Na2CO3, with the equivalent WJJ and 
WPV notations pC2/~ and S(X, Y ) i •±md.  In order 
to clarify the physical meaning of the different axes 
and to keep the setting chosen for the average struc- 
ture, it is possible to add the components of the 
modulation vector and the orientation of the internal 
direction to the previously described WJJ or WPV 
symbol. The full symbols would be 

pC E/ '~( a, O, y) and S(X, Y)iV_l_md(aa*+yc*,d). 

Let us now take the example of the structural family 
A2BX4. The structure of K2SeO4 has been given in 
the WJJ space group P P ~  (a, 0, 0) (Yamada, Ono 
& Ikeda, 1984). This group does not appear in the 
first table of the WJJ notations (de Wolff et al., 1981), 
but it has been shown that it is equivalent to the space 
group P n a m ( 1 -  O~, 0, 0 )  with a different choice of 
the modulation vector (Yamamoto et al., 1985). These 
two symbols can be translated in WPV notation by 

2bV+¢_l_2,, ma+d, md(aa* , d) 

and 

• md[(1 )a*, d]. 2b+c_L2a+d, ma, - a 

In the same family, the group PP m c s ~ (0,0, y ) h a s  
been proposed for the modulated structure of 
[N(CH3)4]2CoC14 (Fjaer, 1985) or of [N(CH3)4]2- 
ZnC14 (Madariaga, Zufii~a, P6rez-Mato & Tello, 
1987); it is equivalent to P"~ ~ ~ (a, 0, 0) in a different 
setting. Nevertheless it is not the same group as that 
of K2SeO4 because of the choice of the modulation 
vector and it must be noted in the WPV notation as 

2bv+~A_2~, m~, md(~/c*, d). 

Another example which involves a centring is the 
modulated structure of CuAu II (Yamamoto, 1982) 
which has been refined with the space group 
LFmmm T i (0,/3, 0). Its WPV notation is 

D(Z, T)(X, Y + Z)2 v_1_2, m, m(/3b*, d). 

In the same way, the NC-type pyrrhotite, Fel_xS 
admits the superspace group W P'a2,t qq, ,1 /2 ,1 /2 ,  y) 
(Yamamoto & Nakazawa, 1982) or 

F(X, Y, T)mc+(b+d)/4, m(a+d)/4, 2c('YC*, d). 

This group is equivalent in a different setting to 
UP~,nb qq(a, 1/2, 1/2) or 

F( Y, Z, T)2~, ma+~¢+d)/4, mCb+d)/4(aa*, d), 

which is the group proposed in the orthorhombic 
symmetry analysis of BaMnF4 (Sciau, Grebille, B6rar 
& Lapasset, 1986). But this last compound has been 
shown to present more probably a monoclinic 

B l '(a, 1/2,0) or symmetry with space group P2 
S( Y, T)2a(aa*, d) (Sciau, Lapasset, Grebille & B6rar, 
1988). 

A last example can be given in the tetragonal or 
orthogonal parallelogram square system. The incom- 
mensurate structure of NbTe4 has been refined in the 
space group wP4/~'~(1/2,  1/2, y) (van Smaalen, 
Bronsema & Mahy, 1986), which can be written 
F(X, Y, T)2_l_4, mc, ma(Tc*,d). 

The four-dimensional formalism has been proved 
also to be useful and adequate for the description 
of commensurate modulated structures (superstruc- 
tures). In this case, all the components of the modula- 
tion vector are rational, and a new symbol has been 
proposed for the WJJ notations: T (van Smaalen, 
1987). Some superstructures can be directly described 
with the superspace groups of the incommensurately 
modulated structures. Thus, the structure of phase 
III of KFeF4 has been successfully described in the 
space group TAT~-~(O, 1/2,0) (Sciau & Grebille, 
1989) or S(Y, z)2V±2a, rn~+a, re(b*/2, d). But one 
can also derive for these commensurate structures 
new space groups which are not contained in de 
Wolff's table (de Wolff et al., 1981) and which have 
been listed by van Smaalen (1987). These new groups 
satisfy new orthogonality and centring conditions and 
so do not belong to the seven mono-incommensurate 
crystal systems of II :4, but to the systems di-orthogonal 
rectangles, orthogonal rectangle square, di-orthog- 
onal squares or orthogonal rectangle hexagon; they 
would justify further developments on the different 
centrings of these systems. 
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